Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Front Immunol ; 15: 1330228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680496

RESUMO

Introduction: Aryl hydrocarbon receptor (AhR) is a transcription factor that performs various functions upon ligand activation. Several studies have explored the role of AhR expression in tumor progression and immune surveillance. Nevertheless, investigations on the distribution of AhR expression, specifically in cancer or immune cells in the tumor microenvironment (TME), remain limited. Examining the AhR expression and distribution in the TME is crucial for gaining insights into the mechanism of action of AhR-targeting anticancer agents and their potential as biomarkers. Methods: Here, we used multiplexed immunohistochemistry (mIHC) and image cytometry to investigate the AhR expression and distribution in 513 patient samples, of which 292 are patients with one of five solid cancer types. Additionally, we analyzed the nuclear and cytosolic distribution of AhR expression. Results: Our findings reveal that AhR expression was primarily localized in cancer cells, followed by stromal T cells and macrophages. Furthermore, we observed a positive correlation between the nuclear and cytosolic expression of AhR, indicating that the expression of AhR as a biomarker is independent of its localization. Interestingly, the expression patterns of AhR were categorized into three clusters based on the cancer type, with high AhR expression levels being found in regulatory T cells (Tregs) in non-small cell lung cancer (NSCLC). Discussion: These findings are anticipated to serve as pivotal evidence for the design of clinical trials and the analysis of the anticancer mechanisms of AhR-targeting therapies.


Assuntos
Neoplasias , Receptores de Hidrocarboneto Arílico , Microambiente Tumoral , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Biomarcadores Tumorais/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
3.
Front Immunol ; 15: 1336246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515751

RESUMO

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígenos CD/metabolismo , Linfócitos do Interstício Tumoral , Interleucina-2/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/metabolismo , Citocinas/metabolismo , Tetraspaninas/metabolismo , Tetraspanina 28 , Proteína Kangai-1/metabolismo
4.
Food Chem ; 445: 138761, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367561

RESUMO

The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.


Assuntos
Bombyx , Hipersensibilidade , Animais , Humanos , Bombyx/genética , Bombyx/química , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida , Reação em Cadeia da Polimerase em Tempo Real , Alérgenos/genética
5.
Nanomicro Lett ; 16(1): 102, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300387

RESUMO

Substrates or encapsulants in soft and stretchable formats are key components for transient, bioresorbable electronic systems; however, elastomeric polymers with desired mechanical and biochemical properties are very limited compared to non-transient counterparts. Here, we introduce a bioresorbable elastomer, poly(glycolide-co-ε-caprolactone) (PGCL), that contains excellent material properties including high elongation-at-break (< 1300%), resilience and toughness, and tunable dissolution behaviors. Exploitation of PGCLs as polymer matrices, in combination with conducing polymers, yields stretchable, conductive composites for degradable interconnects, sensors, and actuators, which can reliably function under external strains. Integration of device components with wireless modules demonstrates elastic, transient electronic suture system with on-demand drug delivery for rapid recovery of post-surgical wounds in soft, time-dynamic tissues.

6.
Foods ; 13(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338499

RESUMO

Lavers are typically consumed in dried or seasoned forms. However, commercially processed lavers can lead to seafood fraud because it is impossible to authenticate the original species based on morphological characteristics alone. In this study, we developed a capillary electrophoresis-based multiplex polymerase chain reaction (PCR) to authenticate six different laver species. The species-specific primer sets to target the chloroplast rbcL or rbcS genes were newly designed. We successfully established both singleplex and multiplex conditions, which resulted in specific amplicons for each species (N. dentata, 274 bp; N. yezoensis, 211 bp; N. seriata, 195 bp; N. tenera, 169 bp; N. haitanensis, 127 bp; P. suborbiculata, 117 bp). Moreover, the assays were sensitive enough to detect DNA ranging from 10 to 0.1 pg of DNA. The optimized capillary electrophoresis-based multiplex PCR was successfully applied to 40 commercial laver products. In addition to detecting the laver species as stated on the commercial label, the assay discovered cases where less expensive species were mixed in. With its advantageous properties, such as short amplicon size, high specificity, and superior sensitivity, this assay could be used for the authentication of the six laver species.

7.
Vet Res ; 55(1): 21, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365748

RESUMO

The emergence of transferable linezolid resistance genes poses significant challenges to public health, as it does not only confer linezolid resistance but also reduces susceptibility to florfenicol, which is widely used in the veterinary field. This study evaluated the genetic characteristics of linezolid-resistant Staphylococcus aureus strains isolated from pig carcasses and further clarified potential resistance and virulence mechanisms in a newly identified sequence type. Of more than 2500 strains isolated in a prior study, 15 isolated from pig carcasses exhibited linezolid resistance (minimum inhibitory concentration ≥ 8 mg/L). The strains were characterized in detail by genomic analysis. Linezolid-resistant S. aureus strains exhibited a high degree of genetic lineage diversity, with one strain (LNZ_R_SAU_64) belonging to ST8004, which has not been reported previously. The 15 strains carried a total of 21 antibiotic resistance genes, and five carried mecA associated with methicillin resistance. All strains harbored cfr and fexA, which mediate resistance to linezolid, phenicol, and other antibiotics. Moreover, the strains carried enterotoxin gene clusters, including the hemolysin, leukotoxin, and protease genes, which are associated with humans or livestock. Some genes were predicted to be carried in plasmids or flanked by ISSau9 and the transposon Tn554, thus being transmittable between staphylococci. Strains carrying the plasmid replicon repUS5 displayed high sequence similarity (99%) to the previously reported strain pSA737 in human clinical samples in the United States. The results illustrate the need for continuous monitoring of the prevalence and transmission of linezolid-resistant S. aureus isolated from animals and their products.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Doenças dos Suínos , Humanos , Animais , Suínos , Linezolida/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/genética , Genômica , República da Coreia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana/genética , Doenças dos Suínos/epidemiologia
8.
Adv Mater ; 36(11): e2307391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37770105

RESUMO

Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.


Assuntos
Implantes Absorvíveis , Hérnia Abdominal , Humanos , Telas Cirúrgicas , Hérnia Abdominal/cirurgia , Sistemas de Liberação de Medicamentos , Eletrônica
9.
Cancers (Basel) ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37760631

RESUMO

(1) Background: This study investigated whether polo-like kinase 4 (PLK4) is a suitable therapeutic target or biomarker for lung adenocarcinoma (LUAD). (2) Methods: We acquired LUAD data from The Cancer Genome Atlas (TCGA) database through the UCSC Xena data portal. Gene expression, clinical, survival, and mutation data from multiple samples were analyzed. Gene enrichment analysis, unsupervised clustering of PLK4-related pathways, and differential gene expression analyses were performed. Additionally, correlations, t-tests, survival analyses, and statistical analyses were performed. (3) Results: PLK4 expression was higher in LUAD tissues than in normal tissues and was associated with poor prognosis for both overall and progression-free survival in LUAD. PLK4 was highly correlated with cell-proliferation-related pathways using Gene Ontology (GO) biological process terms. PLK4 expression and pathways that were highly correlated with PLK4 expression levels were upregulated in patients with LUAD with the TP53 mutation. (4) Conclusions: PLK4 expression affects the survival of patients with LUAD and is a potential therapeutic target for LUAD with TP53 mutations.

11.
Appl Microbiol Biotechnol ; 107(19): 6047-6056, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542576

RESUMO

Listeria monocytogenes is a pathogenic bacterium which can live in adverse environments (low pH, high salinity, and low temperature). Even though there are various whole genome sequencing (WGS) data on L. monocytogenes, investigations on genetic differences between stress-resistant and -sensitive L. monocytogenes grown under stress environments have been not fully examined. This study aims to investigate and compare genetic characteristics between stress-resistant and -sensitive L. monocytogenes using whole genome sequencing (WGS). A total of 47 L. monocytogenes strains (43 stress-resistant and 4 stress-sensitive) were selected based on the stress-resistance tests under pH 3, 5% salt concentration, and 1 °C. The sequencing library for WGS was prepared and sequenced using an Illumina MiSeq. Genetic characteristics of two different L. monocytogenes groups were examined to analyze the pangenome, functionality, virulence, antibiotic resistance, core, and unique genes. The functionality of unique genes in the stress-resistant L. monocytogenes was distinct compared to the stress-sensitive L. monocytogenes, such as carbohydrate and nucleotide transport and metabolism. The lisR virulence gene was detected more in the stress-resistant L. monocytogenes than in the stress-sensitive group. Five stress-resistant L. monocytogenes strains possessed tet(M) antibiotic resistance gene. This is the first study suggesting that deep genomic characteristics of L. monocytogenes may have different resistance level under stress conditions. This new insight will aid in understanding the genetic relationship between stress-resistant and -sensitive L. monocytogenes strains isolated from diverse resources. KEY POINTS: • Whole genomes of L. monocytogenes isolated from three different sources were analyzed. • Differences in two L. monocytogenes groups were identified in functionality, virulence, and antibiotic resistance genes. • This study first examines the association between resistances and whole genomes of stress-resistant and -sensitive L. monocytogenes.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Microbiologia de Alimentos , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
12.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446188

RESUMO

Although Weissella cibaria and W. confusa are essential food-fermenting bacteria, they are also opportunistic pathogens. Despite these species being commercially crucial, their taxonomy is still based on inaccurate identification methods. In this study, we present a novel approach for identifying two important Weissella species, W. cibaria and W. confusa, by combining matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer (MALDI-TOF MS) data using machine-learning techniques. After on- and off-plate protein extraction, we observed that the BioTyper database misidentified or could not differentiate Weissella species. Although Weissella species exhibited very similar protein profiles, these species can be differentiated on the basis of the results of a statistical analysis. To classify W. cibaria, W. confusa, and non-target Weissella species, machine learning was used for 167 spectra, which led to the listing of potential species-specific mass-to-charge (m/z) loci. Machine-learning techniques including artificial neural networks, principal component analysis combined with the K-nearest neighbor, support vector machine (SVM), and random forest were used. The model that applied the Radial Basis Function kernel algorithm in SVM achieved classification accuracy of 1.0 for training and test sets. The combination of MALDI-TOF MS and machine learning can efficiently classify closely-related species, enabling accurate microbial identification.


Assuntos
Weissella , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Aprendizado de Máquina
13.
ACS Nano ; 17(15): 14822-14830, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37497757

RESUMO

Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology. Nature-inspired micropatterns reduce the diffusion area for water molecules, and embedded nanoparticles impede water permeation, which synergistically enhances the water-barrier performance. Empirical and theoretical evaluations validate the encapsulation mechanisms under strains. Demonstration of a soft, degradable shield with an optical component under a biological solution highlights the potential applicability of the proposed encapsulation strategy.

14.
Food Sci Biotechnol ; 32(10): 1395-1404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37457413

RESUMO

Recently, various commercial ark shell products were being sold, and in the case of processed foods, the loss of morphological traits makes species identification visually challenging, which can lead to seafood fraud. Therefore, a multiplex polymerase chain reaction (PCR) assay was developed to simultaneously identify three ark shells. The specific PCR amplicon sizes of the generated species-specific primer pairs were observed to be 99 bp for Anadara kagoshimensis, 148 bp for Anadara broughtonii, and 207 bp for Tegillarca granosa. Specificity was confirmed for 17 fish and shellfish, and only the target was amplified without cross-reactivity. The detection limit for the multiplex PCR assay was 1 pg. Furthermore, 31 commercial products were evaluated to assess the developed assay's applicability. Therefore, the analytical approach used in this study can rapidly and accurately identify ark shells in commercial food, and may be used as an authentication tool in the seafood industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01269-2.

15.
Food Sci Biotechnol ; 32(7): 979-985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37123063

RESUMO

Centipedes contain pharmacologically active compounds used as important medicinal material. However, the poisons produced by centipedes can cause human diseases; therefore, its use as a food ingredient is prohibited. This is the first report to develop a real-time PCR method for detection of centipedes. The primer and probe targeting the mitochondrial cytochrome c oxidase subunit 1 (COI) gene were newly designed. The specificity was verified using ten species and was confirmed to amplify only the centipede species. The real-time PCR method exhibited good linearity with a high-determination coefficient (R 2 = 0.999) and a detection limit was 0.001 ng. The performance of our method was also verified using five real-time PCR platforms under Universal and Fast PCR conditions. Finally, its applicability to processed food was evaluated using binary insect mixtures, and at least 0.1% of centipedes was detected. Therefore, our method can specifically and sensitively detect centipedes in food, contributing to food safety.

16.
ACS Nano ; 17(9): 8511-8520, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070621

RESUMO

Current standard clinical options for patients with detrusor underactivity (DUA) or underactive bladder─the inability to release urine naturally─include the use of medications, voiding techniques, and intermittent catheterization, for which the patient inserts a tube directly into the urethra to eliminate urine. Although those are life-saving techniques, there are still unfavorable side effects, including urinary tract infection (UTI), urethritis, irritation, and discomfort. Here, we report a wireless, fully implantable, and expandable electronic complex that enables elaborate management of abnormal bladder function via seamless integrations with the urinary bladder. Such electronics can not only record multiple physiological parameters simultaneously but also provide direct electrical stimulation based on a feedback control system. Uniform distribution of multiple stimulation electrodes via mesh-type geometry realizes low-impedance characteristics, which improves voiding/urination efficiency at the desired times. In vivo evaluations using live, free-moving animal models demonstrate system-level functionality.


Assuntos
Bexiga Inativa , Bexiga Urinária , Animais
17.
Food Microbiol ; 113: 104265, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098421

RESUMO

Droplet digital polymerase chain reaction (ddPCR) is an emerging molecular detection assay that provides an absolute quantification of targets. Despite its emerging applications in the detection of food microorganisms, there are limited reports of its use for the monitoring of microorganisms utilized as starters in the dairy industry. This study investigated the applicability of ddPCR as a detection platform for Lacticaseibacillus casei, a probiotic found in fermented foods and exerts beneficial effects on human health. In addition, this study compared the performance of ddPCR with that of real-time PCR. The ddPCR targeting the haloacid dehalogenase-like hydrolase (LBCZ_1793) exhibited high specificity against 102 nontarget bacteria, including Lacticaseibacillus species that is very closely related to L. casei. The ddPCR exhibited high linearity and efficiency within the quantitation range (105-100 CFU/ml), with the limit of detection being 100 CFU/ml. The ddPCR also demonstrated a higher sensitivity than real-time PCR in detecting low bacterial concentration in spiked milk samples. Furthermore, it provided an accurate absolute quantification of the concentration of L. casei, without the need for standard calibration curves. This study demonstrated that ddPCR is a useful method for monitoring starter cultures in dairy fermentations and detecting L. casei in foods.


Assuntos
Lacticaseibacillus casei , Lacticaseibacillus , Humanos , Lacticaseibacillus casei/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alimentos
18.
Nat Commun ; 14(1): 2263, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081012

RESUMO

As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.


Assuntos
Robótica , Dispositivos Eletrônicos Vestíveis , Elastômeros/química , Eletrônica , Próteses e Implantes
19.
Sci Adv ; 9(5): eadf5883, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724224

RESUMO

Recent advances in passive radiative cooling systems describe a variety of strategies to enhance cooling efficiency, while the integration of such technology with a bioinspired design using biodegradable materials can offer a research opportunity to generate energy in a sustainable manner, favorable for the temperature/climate system of the planet. Here, we introduce stretchable and ecoresorbable radiative cooling/heating systems engineered with zebra stripe-like patterns that enable the generation of a large in-plane temperature gradient for thermoelectric generation. A comprehensive study of materials with theoretical evaluations validates the ability to accomplish the target performances even under external mechanical strains, while all systems eventually disappear under physiological conditions. Use of the zebra print for selective radiative heating demonstrates an unexpected level of temperature difference compared to use of radiative cooling emitters alone, which enables producing energy through resorbable silicon-based thermoelectric devices. The overall result suggests the potential of scalable, ecofriendly renewable energy systems.

20.
Appl Microbiol Biotechnol ; 107(4): 1119-1127, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680587

RESUMO

The genus Weissella belongs to the lactic acid bacteria group. It occurs naturally in foods and is a component of the human microbiome. A few Weissella species are candidate probiotics due to their potential for survival under the harsh conditions present in the gastrointestinal tract of humans and animals. Various species have also shown potential for treating and preventing periodontal disease, skin pathologies, and atopic dermatitis; some are used as starters for the fermentation of foods due to their production of exopolysaccharides; and others are used as protective cultures due to their production of weissellicin, a bacteriocin. However, a few Weissella species are opportunistic pathogens, such as W. ceti, which is the etiological agent of weissellosis, a disease in rainbow trout. Additionally, most Weissella species are intrinsically vancomycin-resistant. Thus, the Weissella genus is important from both medical and industrial points of view, and the Janus faces of this genus should be considered in any expected biotechnological applications. In this review, we present an overview of the probiotic potential and pathogenic cases of the Weissella genus reported in the literature.


Assuntos
Lactobacillales , Oncorhynchus mykiss , Probióticos , Weissella , Animais , Humanos , Oncorhynchus mykiss/microbiologia , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA